Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8155, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581239

RESUMO

Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.


Assuntos
Daucus carota , Policetídeos , Toxinas Biológicas , Alternaria/metabolismo , Daucus carota/genética , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Metabolismo Secundário/genética , Toxinas Biológicas/metabolismo
2.
J Exp Bot ; 71(10): 2910-2921, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32006004

RESUMO

Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Diterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Colletotrichum , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas
3.
Mol Plant Pathol ; 20(6): 831-842, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924614

RESUMO

The role of histone 3 lysine 4 (H3K4) methylation is poorly understood in plant pathogenic fungi. Here, we analysed the function of CclA, a subunit of the COMPASS complex mediating H3K4 methylation, in the brassica anthracnose pathogen Colletotrichum higginsianum. We show that CclA is required for full genome-wide H3K4 trimethylation. The deletion of cclA strongly reduced mycelial growth, asexual sporulation and spore germination but did not impair the morphogenesis of specialized infection structures (appressoria and biotrophic hyphae). Virulence of the ΔcclA mutant on plants was strongly attenuated, associated with a marked reduction in appressorial penetration ability on both plants and inert cellophane membranes. The secondary metabolite profile of the ΔcclA mutant was greatly enriched compared to that of the wild type, with three different families of terpenoid compounds being overproduced by the mutant, namely the colletochlorins, higginsianins and sclerosporide. These included five novel molecules that were produced exclusively by the ΔcclA mutant: colletorin D, colletorin D acid, higginsianin C, 13-epi-higginsianin C and sclerosporide. Taken together, our findings indicate that H3K4 trimethylation plays a critical role in regulating fungal growth, development, pathogenicity and secondary metabolism in C. higginsianum.


Assuntos
Colletotrichum/metabolismo , Colletotrichum/patogenicidade , Diterpenos/metabolismo , Histonas/metabolismo , Arabidopsis/microbiologia , Colletotrichum/genética , Metilação , Mutação/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Virulência
4.
J Nat Prod ; 82(4): 813-822, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30776231

RESUMO

Colletotrichum higginsianum is the causal agent of crucifer anthracnose disease, responsible for important economic losses in Brassica crops. A mutant lacking the CclA subunit of the COMPASS complex was expected to undergo chromatin decondensation and the activation of cryptic secondary metabolite biosynthetic gene clusters. Liquid-state fermentation of the Δ cclA mutant coupled with in situ solid-phase extraction led to the production of three families of compounds, namely, colletorin and colletochlorin derivatives with two new representatives, colletorin D (1) and colletorin D acid (2), the diterpenoid α-pyrone higginsianin family with two new analogues, higginsianin C (3) and 13- epi-higginsianin C (4), and sclerosporide (5) coupling a sclerosporin moiety with dimethoxy inositol.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Colletotrichum/metabolismo , Deleção de Genes , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida de Alta Pressão , Colletotrichum/genética , Genes Fúngicos , Espectroscopia de Prótons por Ressonância Magnética
5.
Artigo em Inglês | MEDLINE | ID: mdl-28955470

RESUMO

BACKGROUND: Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype. RESULTS: Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain. CONCLUSION: This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization.

6.
BMC Genomics ; 18(1): 667, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851275

RESUMO

BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.


Assuntos
Cromossomos Fúngicos/genética , Colletotrichum/genética , Colletotrichum/metabolismo , Elementos de DNA Transponíveis/genética , Genômica , Família Multigênica/genética , Recombinação Homóloga/genética , Anotação de Sequência Molecular , Filogenia , Mutação Puntual/genética
7.
Genome Announc ; 4(4)2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27540062

RESUMO

Colletotrichum higginsianum is an ascomycete fungus causing anthracnose disease on numerous cultivated plants in the family Brassicaceae, as well as the model plant Arabidopsis thaliana We report an assembly of the nuclear genome and gene annotation of this pathogen, which was obtained using a combination of PacBio long-read sequencing and optical mapping.

8.
Front Plant Sci ; 6: 414, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089832

RESUMO

Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.

9.
PLoS One ; 8(10): e75143, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098369

RESUMO

In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3), harbouring the asparagine-proline-arginine (DPR) signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK) pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.


Assuntos
Alternaria/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Plantas/microbiologia , Estresse Fisiológico , Alternaria/citologia , Alternaria/efeitos dos fármacos , Alternaria/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Congelamento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico/genética , Dados de Sequência Molecular , Mutação , Estresse Oxidativo/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , RNA Mensageiro/genética , Sais/farmacologia , Sementes/microbiologia , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
10.
Front Plant Sci ; 4: 131, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717316

RESUMO

In this study, the physiological functions of fungal mannitol metabolism in the pathogenicity and protection against environmental stresses were investigated in the necrotrophic fungus Alternaria brassicicola. Mannitol metabolism was examined during infection of Brassica oleracea leaves by sequential HPLC quantification of the major soluble carbohydrates and expression analysis of genes encoding two proteins of mannitol metabolism, i.e., a mannitol dehydrogenase (AbMdh), and a mannitol-1-phosphate dehydrogenase (AbMpd). Knockout mutants deficient for AbMdh or AbMpd and a double mutant lacking both enzyme activities were constructed. Their capacity to cope with various oxidative and drought stresses and their pathogenic behavior were evaluated. Metabolic and gene expression profiling indicated an increase in mannitol production during plant infection. Depending on the mutants, distinct pathogenic processes, such as leaf and silique colonization, sporulation, survival on seeds, were impaired by comparison to the wild-type. This pathogenic alteration could be partly explained by the differential susceptibilities of mutants to oxidative and drought stresses. These results highlight the importance of mannitol metabolism with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle.

11.
BMC Evol Biol ; 11: 67, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21396107

RESUMO

BACKGROUND: Bacterial plant pathogens belonging to the Xanthomonas genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue. RESULTS: We established the distribution of 70 genes coding sensors and adhesins in a large collection of xanthomonad strains. These 173 strains belong to different pathovars of Xanthomonas spp and display different host ranges. Candidate genes are involved in chemotactic attraction (25 genes), chemical environment sensing (35 genes), and adhesion (10 genes). Our study revealed that candidate gene repertoires comprised core and variable gene suites that likely have distinct roles in host adaptation. Most pathovars were characterized by unique repertoires of candidate genes, highlighting a correspondence between pathovar clustering and repertoires of sensors and adhesins. To further challenge our hypothesis, we tested for molecular signatures of selection on candidate genes extracted from sequenced genomes of strains belonging to different pathovars. We found strong evidence of adaptive divergence acting on most candidate genes. CONCLUSIONS: These data provide insight into the potential role played by sensors and adhesins in the adaptation of xanthomonads to their host plants. The correspondence between repertoires of sensor and adhesin genes and pathovars and the rapid evolution of sensors and adhesins shows that, for plant pathogenic xanthomonads, events leading to host specificity may occur as early as chemotactic attraction by host and adhesion to tissues.


Assuntos
Adaptação Fisiológica/genética , Aderência Bacteriana , Quimiotaxia/genética , Xanthomonas/fisiologia , Adesinas Bacterianas/genética , DNA Bacteriano/genética , Mineração de Dados , Genes Bacterianos , Plantas/microbiologia , Seleção Genética , Alinhamento de Sequência , Xanthomonas/genética , Xanthomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...